Strategy dynamics in a metapopulation model of cancer cells

Wednesday, June 16 at 11:30pm (PDT)
Thursday, June 17 at 07:30am (BST)
Thursday, June 17 03:30pm (KST)

SMB2021 SMB2021 Follow Wednesday (Thursday) during the "PS05" time block.
Share this

Anni S. Halkola

Department of Mathematics and Statistics, University of Turku, Finland
"Strategy dynamics in a metapopulation model of cancer cells"
Tumors consist of cells with abnormal phenotypes. These cells might be or become cancerous, which can lead to increased cell growth and even metastases. In this work, we have considered cancer as a metapopulation, in which habitat patches correspond to possible sites for a cluster of cancer cells. Cancer cells may emigrate into dispersal pool ( e.g. circulation system) and spread to new areas (i.e. metastatic disease). In the patches, cells divide and new mutations may arise, possibly leading into an invasion if the mutation is favorable. We consider various relevant strategies (phenotypes), such as the emigration rate and their contribution to angiogenesis, which is an important part of early stages of tumor development. We use the metapopulation fitness of new mutations to investigate how these strategies evolve in cancer through natural selection and disease progression. We further add treatment effects and investigate how different therapy regimens affect the evolution of the strategies. These aspects are relevant, for example, when examining the process of a benign tumor becoming cancerous, and how to best treat the early stages of cancer development.

Hosted by SMB2021 Follow
Virtual conference of the Society for Mathematical Biology, 2021.